INTERMEDIATE ALGEBRA/MATH 64

SHANNON GRACEY

$\pi 100$ POINTS POSSIBLE
π YOUR WO RKMUS T S UPPO RI YO UR $\mathcal{A N} \mathcal{N} \mathcal{W}$ ER FO R FULL $\mathcal{C R E D I T}$ $\mathcal{T O} \mathcal{B E} \mathcal{A} \mathcal{W} \mathcal{A R D E D}$
π YOU MAY USE A SCIENKIIFIC CALCULATOR
$\pi \mathcal{P R O V I D E ~ E X A C T ~} \mathcal{A N S} \mathcal{W} E R S$ UNLEESS OTHERWIS E INDICATED

 $\mathcal{N} O \mathcal{B A T H R O O S} \mathcal{B R E A X S}!$

NAM E_{F}

EXAM 3/ POINTS POSSIBLE
This exam was curved - points possible changed to 95.
CREDIT WILL BE AW ARDED BASED ON WORK SHOWN. THERE WILL BE NO CREDIT FOR GUESSING. PLEASE PRESENT YOUR WORK IN AN ORGANISED, EASY TO READ FASHION.

1. (8 POINTS) Find the distance between the pair of points $(-1,0)$ and $(-3,-8)$. If necessary, express the answer in simplified radical form.

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-1\right)^{2}} \\
& d=\sqrt{(-3-(-1))^{2}+(-8-0)^{2}} \\
& d=\sqrt{(-2)^{2}+(-8)^{2}} \\
& d=\sqrt{4+64}
\end{aligned}
$$

Distance: \square $2 \sqrt{17}$ units
2. (12 POINTS) No credit will be awarded for guessing. A 22 foot ladder is leaning against a building, with the base of the ladder 5 feet from the building. How high up on the building will the top of the ladder reach? You may round to the nearest tenth of a foot, if necessary.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(5)^{2}+(b)^{2} & =(22)^{2} \\
25+b^{2} & =484 \\
b^{2} & =459 \\
b & =\sqrt{(9)(51)} \\
b & =3 \sqrt{51} \mathrm{ft} \\
b & \approx 21.4 \mathrm{ft}
\end{aligned}
$$

The top of the ladder rests approximately at a height 21.4 ft .
3. (14 POINTS) You may round the intercepts to the nearest tenth, if necessary. (2 POINTS) Sketch the graph. Use the vertex and intercepts to sketch the graph of $f(x)=(x-3)^{2}-1$.
(4 POINTS) Vertex: \qquad

$$
f(x)=a(x-h)^{2}+k \rightarrow a=1, h=3, k=-1
$$

$$
f(x)=1(x-3)^{2}+(-1)
$$

opens upward
since $a>0$.
vertex: (h, k)
vertex: $(3,-1)$

(4 POINTS) x-intercepts: $(2,0)$ and $(4,0)$

$$
\left.\begin{array}{rl}
f(x) & =(x-3)^{2}-1 \\
0 & =(x-3)^{2}-1 \\
+1 \\
\sqrt{1} & =\sqrt{(x-3)^{2}} \\
\pm 1 & =x-3
\end{array}\right\} \begin{array}{crr}
x-3=-1 & \text { or } & x-3=1 \\
x=2 & x=4
\end{array}
$$

(1 POINT) Axis of symmetry: $x=3$

$$
x=h
$$

(1 POINT) y-intercept: $(0,8)$

$$
\begin{aligned}
& f(x)=(x-3)^{2}-1 \\
& f(0)=((0)-3)^{2}-1 \rightarrow f(0)=9-1 \rightarrow f(0)=8
\end{aligned}
$$

(2 POINTS) Domain in interval notation: $(-\infty, \infty)$
(2 POINTS) Range in interval notation: $[-1, \infty)$

$$
\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)
$$

4. (4 POINTS) Find the midpoint of the line segment with endpoints $(-2,4)$ and $(9,1)$.

$$
\text { midpoint: } \begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-2+9}{2}, \frac{4+1}{2}\right) \\
& =\left(\frac{7}{2}, \frac{5}{2}\right)
\end{aligned}
$$

Midpoint: $(7 / 2,5 / 2)$
5. (10 POINTS) Solve the following equation using the method of your choice. Give exact answers, using radicals and i as needed.

$$
7 x^{2}=-4 x-2
$$

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a=7, b=4, c=2
\end{gathered}
$$

$$
\begin{aligned}
& x=\frac{-(4) \pm \sqrt{(4)^{2}-4(7)(2)}}{2(7)} \\
& x=\frac{-4 \pm \sqrt{16-56}}{14} \\
& x=\frac{-4 \pm \sqrt{-40}}{14} \\
& x=\frac{-4 \pm \sqrt{(4)(-1)(10)}}{14}
\end{aligned}\left\{\begin{array}{l}
x=\frac{-4 \pm 2 i \sqrt{10}}{14} \\
x=\frac{x(-2 \pm i \sqrt{10})}{147} \\
x=\frac{-2 \pm \sqrt{10} i}{7} \\
\left\{\frac{-2-\sqrt{10} i}{7}, \frac{-2+\sqrt{10} i}{7}\right\}
\end{array}\right.
$$

6. (10 POINTS) Solve. Give exact answers, using radicals and i as needed.

$$
\begin{aligned}
& x^{4}-x^{2}-6=0 \\
& \left(x^{2}\right)^{2}-\left(x^{2}\right)-6=0 \\
& u^{2}-u-6=0 \\
& (u-3)(u+2)=0 \\
& u-3=0 \text { or } u+2=0 \\
& u=3 \quad u=-2
\end{aligned}
$$

$$
\text { Let } u=x^{2} \text {, so } x= \pm \sqrt{u}
$$

$$
u=-2
$$

$$
u=3
$$

$$
x= \pm \sqrt{-2}
$$

$$
x= \pm \sqrt{3}
$$

$$
x= \pm \sqrt{2} i
$$

$$
\{-\sqrt{2} i,-\sqrt{3}, \sqrt{2} i, \sqrt{3}\}
$$

7. (8 POINTS) Evaluate the following expressions without using a calculator. Each problem is worth 3 points.
a. $\log _{2} 16=$ \square 4
c. $\quad \log 10^{20}=$ \square 20
b. $\log _{49} 7=$ \square $\frac{1}{2}$
d. $\ln e=$ \square 5
8. (8 POINTS) Consider the exponential function $y=2^{x+1}$.
a. (6 POINTS) Sketch the graph by hand.

x	$y=2^{x+1}$	(x, y)
-3	$y=2^{-3+1}=\frac{1}{4}$	$\left(-3, \frac{1}{4}\right)$
-2	$y=2^{-2+1}=\frac{1}{2}$	$\left(-2, \frac{1}{2}\right)$
-1	$y=2^{-1+1}=1$	$(-1,1)$
0	$y=2^{0+1}=2$	$(0,2)$
1	$y=2^{1+1}=4$	$(1,4)$

b. (1 POINT) The domain in interval notation is: \square
c. (1 POINT) The range in interval notation is: \square
9. (4 POINTS) Evaluate the expression without using a calculator. Show all work!

$$
\begin{aligned}
\log _{2}\left(\log _{3} 81\right) & =\log _{2}(4) \\
& =2
\end{aligned}
$$

10. (10 POINTS) Solve by completing the square. Give exact answers, using radicals and i as needed.

$$
x^{2}-8 x-4=0
$$

$$
\begin{aligned}
& \begin{array}{r}
x-4 \\
x^{2}-8 x+(-4)^{2} \\
\hline(x-4)^{2} \\
(x-4)^{2} \\
\sqrt{20}
\end{array} \\
& \sqrt{(x+16} \quad\left[\begin{array}{l}
x-4= \pm \sqrt{20} \\
x-4= \pm \sqrt{(4)(5)} \\
x-4= \pm 2 \sqrt{5} \\
x=4 \pm 2 \sqrt{5}
\end{array}\right. \\
& \{4-2 \sqrt{5}, 4+2 \sqrt{5}\}
\end{aligned}
$$

11. (12 POINTS) The profit, $P(x)$, generated after producing and selling x units of a product is given by the function $P(x)=R(x)-C(x)$, where R and C are the revenue and cost functions, respectively. A local sandwich store has a fixed weekly cost of $\$ 545.00$, and variable costs for making a roast beef sandwich are $\$ 0.60$.
a. (2 POINTS) Let x represent the number of roast beef sandwiches made and sold each week. W rite the weekly cost function, C, for the local sandwich store.

$$
C(x)=0.60 x+545.00
$$

b. (4 POINTS) The function $R(x)=-0.001 x^{2}+3 x$ describes the money that the local sandwich store takes in each week from the sale of x roast beef sandwiches. What is the weekly profit function?

$$
\begin{aligned}
& P(x)=R(x)-C(x) \\
& P(x)=\left(-0.001 x^{2}+3 x\right)-(0.60 x+545.00) \\
& P(x)=-0.001 x^{2}+2.40 x-545.00 \\
& P(x)=-0.001 x^{2}+2.40 x-545.00
\end{aligned}
$$

c. (6 POINTS) Use the store's profit function to determine the number of roast beef sandwiches it should make and sell each week to maximize profit, and find the maximum weekly profit.

We need to find the vertex (h, K)

$$
\begin{aligned}
& h=-\frac{b}{2 a} \\
& h=-\frac{2.40}{2(-0.001)} \\
& h=\frac{2.40}{0.002}
\end{aligned}
$$

$$
a=-0.001, b=2.40
$$

$$
K=P(1200)=-0.001(1200)^{2}+2.40(1200)-545.00
$$

$$
h=1200 \quad K=P(1200)=895 \text {. The maximum profit is } \$ 895.00
$$

The maximum weekly profit is \square 5895 1200 sandwiches are sold.

